Peregrination of the selectivity filter delineates the pore of the human voltage-gated proton channel hHV1
نویسندگان
چکیده
Extraordinary selectivity is crucial to all proton-conducting molecules, including the human voltage-gated proton channel (hHV1), because the proton concentration is >10(6) times lower than that of other cations. Here we use "selectivity filter scanning" to elucidate the molecular requirements for proton-specific conduction in hHV1. Asp(112), in the middle of the S1 transmembrane helix, is an essential part of the selectivity filter in wild-type (WT) channels. After neutralizing Asp(112) by mutating it to Ala (D112A), we introduced Asp at each position along S1 from 108 to 118, searching for "second site suppressor" activity. Surprisingly, most mutants lacked even the anion conduction exhibited by D112A. Proton-specific conduction was restored only with Asp or Glu at position 116. The D112V/V116D channel strikingly resembled WT in selectivity, kinetics, and ΔpH-dependent gating. The S4 segment of this mutant has similar accessibility to WT in open channels, because R211H/D112V/V116D was inhibited by internally applied Zn(2+). Asp at position 109 allowed anion permeation in combination with D112A but did not rescue function in the nonconducting D112V mutant, indicating that selectivity is established externally to the constriction at F150. The three positions that permitted conduction all line the pore in our homology model, clearly delineating the conduction pathway. Evidently, a carboxyl group must face the pore directly to enable conduction. Molecular dynamics simulations indicate reorganization of hydrogen bond networks in the external vestibule in D112V/V116D. At both positions where it produces proton selectivity, Asp frequently engages in salt linkage with one or more Arg residues from S4. Surprisingly, mean hydration profiles were similar in proton-selective, anion-permeable, and nonconducting constructs. That the selectivity filter functions in a new location helps to define local environmental features required to produce proton-selective conduction.
منابع مشابه
Resting state of the human proton channel dimer in a lipid bilayer.
The voltage-gated proton channel Hv1 plays a critical role in the fast proton translocation that underlies a wide range of physiological functions, including the phagocytic respiratory burst, sperm motility, apoptosis, and metastatic cancer. Both voltage activation and proton conduction are carried out by a voltage-sensing domain (VSD) with strong similarity to canonical VSDs in voltage-depende...
متن کاملThe Pore of the Voltage-Gated Proton Channel
In classical tetrameric voltage-gated ion channels four voltage-sensing domains (VSDs), one from each subunit, control one ion permeation pathway formed by four pore domains. The human Hv1 proton channel has a different architecture, containing a VSD, but lacking a pore domain. Since its location is not known, we searched for the Hv permeation pathway. We find that mutation of the S4 segment's ...
متن کاملStabilization of ion selectivity filter by pore loop ion pairs in an inwardly rectifying potassium channel.
Ion selectivity is critical for the biological functions of voltage-dependent cation channels and is achieved by specific ion binding to a pore region called the selectivity filter. In voltage-gated K+, Na+ and Ca2+ channels, the selectivity filter is formed by a short polypeptide loop (called the H5 or P region) between the fifth and sixth transmembrane segments, donated by each of the four su...
متن کاملExtracellular protons titrate voltage gating of a ligand-gated ion channel
Cyclic nucleotide-gated channels mediate transduction of light into electric signals in vertebrate photoreceptors. These channels are primarily controlled by the binding of intracellular cyclic GMP (cGMP). Glutamate residue 363 near the extracellular end of the ion selectivity filter interacts with the pore helix and helps anchor the filter to the helix. Disruption of this interaction by mutati...
متن کاملReciprocal voltage sensor-to-pore coupling leads to potassium channel C-type inactivation
Voltage-gated potassium channels open at depolarized membrane voltages. A prolonged depolarization causes a rearrangement of the selectivity filter which terminates the conduction of ions - a process called slow or C-type inactivation. How structural rearrangements in the voltage-sensor domain (VSD) cause alteration in the selectivity filter, and vice versa, are not fully understood. We show th...
متن کامل